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Abstract. This work addresses the machine learning problems re-
lated to Imaging Air Cherenkov Telescopes analysis with the intent
of leveraging a richer description of the captured events by using
Convolutional Neural Networks, avoiding the potential information
loss due to the hand-crafted feature engineering used in the standard
analysis. An explainable and minimal model pointed toward the lim-
itation of the simulation used for training. The full analysis is then
tested both on simulated and real data, showing a significant im-
provement of the sensitivity of the system for different energy bands.

1 INTRODUCTION

In the universe there is more than we can see, our eyes are only sensi-
tive to a small portion of the light spectra but outside of that lie infor-
mation about a wild variety of phenomena. In particular the MAGIC
telescopes? are built to capture the most energetics photons (gamma-
rays) that reach our planet and interact with the atmosphere. The sys-
tem is built exploiting a phenomenon known as Cherenkov radiation,
a brief and dim blue light emitted by objects traveling faster than the
speed of light in the medium they are in. One of the big problems
with this technique is being able to discriminate the signal from the
background. Unfortunately gamma rays are not the only particles that
produce Cherenkov light, as there is a wide and diverse catalog of
events that make the telescopes trigger, outnumbering gamma rays at
about 2000:1. In order to discover and characterize a new gamma-ray
source the analysis must recover only the events caused by gamma
photons and then reconstruct their energy and their direction of im-
pact in the sky.

When an energetic particle interact with the atmosphere, it pro-
duces a cone of light due to the Cherenkov effect. The telescopes fo-
cus with a big array of mirrors this secondary shower of light toward
the camera. The camera is composed of 1024 photodetectors which
produce a voltage proportional to the light that reach the sensors (raw
signal). This voltage is then processed to estimate the number of pho-
tons arrived to the camera (Calibrated signal). After a number of trig-
gers that aim to grab plausible gamma events, a set of handcrafted
features is computed (Hillas parameters). The physical underlying
process is reproduced with a Montecarlo Simulation (MC) which al-
lows to have a set of expected observations with their ground-truth
from which the analysis can learn. Once the analysis chain is com-
pleted, in order to check its correctness the telescopes are pointed
toward the Crab Nebula, a well-known strong and stable source of
gamma-rays, and compares its spectra with the one established in the
literature by other experiments.
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In order to select and reconstruct the energy and the direction of
the events, the standard analysis makes use of machine learning from
a parametrization of the grabbed events. In particular, Aleksic et al.
[1] solves the tasks in this way:

1. Separation: A random forest for classification is trained on the
Hillas parameters for MC gamma rays (Signal) and real observa-
tions taken when the telescopes point to a dark region of the sky
(Background)

2. Energy: A Nearest Neighbour trained on the MC estimates the
energy of the events

3. Direction: Some additional features are computed with a geomet-
ric rationale, and the final result is then fine-tuned with a Random
Forest Regressor.

2 DEEP LEARNING ANALYSIS

The feature engineering is (as of any parametrization) destroying in-
formation that could be potentially useful for the purposes of the
analysis. The approach proposed in this work is based on Deep
Learning (DL). More precisely we use Convolutional Neural Net-
work (CNNGs) starting from the Calibrated signal. Anyway since the
feature engineering provides an already valuable source of predictive
information, Hillas parameters are passed to the network as side-
information. The architectures for each task thus are composed of
two differentiable stages:

1. a CNN body that process the Calibrated signal
2. a Self-Normalizing Neural Network [6] that processes the hand-
crafted features.

These two branches of processing are then merged together at the
final layer in order to produce the final estimation. In particular dif-
ferent CNN bodies were found more suit to different tasks:

1. Separation uses a VGG-19 [7]

2. Energy uses an Inception V3 [8] with squeeze and excitation
blocks [2]

3. Direction uses a Densenet-121 [4] with squeeze and excitation
blocks [2]

Each model was trained with stochastic weight avearging [5] of
checkpointed models computed with a cyclical learning rate [3]. In
order to being able to interface with the DL frameworks the cali-
brated data was interpolated from a native hexagonal grid to a reg-
ular rectangular grid. Due to the big memory footprint of the train-
ing data (>500GB), the events were structured in a custom-designed
SQL server.
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3 UNDERSTANDING THE
SIMULATION/REALITY GAP

When separation is trained and tested on the MC-Real data (as in the
standard analysis) the model reach an accuracy of 99.99%, which is
unrealistic because we still expect a small 1% of gamma-like events
in the Real data.

In order to better investigate what happened in the separation,
we designed a minimal and explainable CNN model (called Simp-
licioNet) based only on the Calibrated signal. Its explainable nature
lies in its simple structure:

1. One layer of four convolutional filters 20x20 pixels with ReLU
activation.

One maxpool layer that selects the most intense activation.

One dense layer without bias that combines the values of the pre-
vious activation and squeezes the result with a sigmoid.

By having a sigmoid as the last non-linear activation we can know
that the feature map combined with a positive coefficient is respon-
sible for the gamma class and the one combined with a negative co-
efficient is responsible for the non-gamma class. By tracing the loca-
tion of the most prominent feature (maxpool) it is possible to trace
the precise activation field of the Calibrated signal that caused the
prediction. When inspected, it was clear that the model was making
decisions not by looking at the shower itself, but by looking at other
places of the image. The model was solving the separation problem
by focusing on some feature of the MC simulation that was different
from the Real-Data observations. In other words it was discriminat-
ing the Simulation from the Real data instead of gamma from non-
gamma. The separation problem was then addressed in two different
ways:

e by performing a strong preprocessing of the calibrated signal that
cleaned the image;

e by using a MC simulation of the background (which unfortunatly
is not really representative of the richness of the real events).

4 RESULTS

The whole pipeline was evaluated both on MC and on Real observa-
tions.

Regarding the MC set, we observed that the DL proposal showed
significant improvements with respect to the standard analysis. En-
ergy resolution is enhanced of 30% for events above 1 TeV while di-
rection reconstruction is enhanced for each energy band ranging from
a 5% to 40%. This is especially important since improvements in the
direction reconstruction translates proportionally to improvements in
the sensitivity of the system. The whole pipeline, thus including also
the separation stage, globally enhance the sensitivity, particularly in
the lower energies bands (Fig. 1).

The final pipeline was then evaluated on a set of 5h of real obser-
vations of the crab nebula. The results showed performances com-
parable with the one of the standard analysis, thus proving the proof
of concept that this richer analysis can in principle work in a real
environment. Most importantly, as the simulation will become more
and more realistic it is reasonable to expect a much more dramatic
improvement in line with the results on the MC set.

S CONCLUSIONS

This work leveraged the steep advancements of computer vision by
adapting DL solutions to the specific field of Imaging Air Cherenkov
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Figure 1. Sensitivity computed on the MC set obtained with the proposed
approach (blue line) and compared with the one actually in operation for the
telescopes (red line). The lower the better.

Telescopes. Results on MC showed superior performances in terms
of sensitivity of the instrument. The implementation of such ap-
proach would allow to require less observation time in order to
claim a discovery, which translates in more discoveries in the same
operational time. Moreover the results point toward improvement
in certain energy bands that allows the discovery of previously-
undetectable sources. SimplicioNet made evident the limits of the
simulation, thus investment of energy and time in its refinement will
be a valuable investment as it will resolve in higher performances on
the real observations.
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